CRITICAL ISSUES FOR THE DIAGNOSIS OF LEARNING DISABILITIES IN THE ADULT POPULATION

NOEL GREGG, CHRIS COLEMAN, MARK DAVIS, WILLIAM LINDSTROM, AND JENNIFER HARTWIG

University of Georgia

Response to intervention (RTI) has little application to the identification of and access to accommodations for adults with learning disabilities (LD). However, the critical topics raised during the reauthorization of the Individuals With Disabilities Education Improvement Act of 2004 (IDEA; 2004) pertaining to LD eligibility criteria are similar to ongoing concerns about the provision of appropriate accommodations for adults. The real issues being challenged include three major points: (a) the relation of LD to achievement, (b) the role of clinical judgment in eligibility criteria, and (c) the purpose of diagnostic assessments. Study of the adult population is critical to a better understanding of the issues surrounding the diagnosis of LD. A review of recent research with the adult population will provide the basis for our support of the use of specific cognitive and linguistic processing measures in the diagnostic methodology for LD. © 2006 Wiley Periodicals, Inc.

The discipline of learning disabilities (LD) is embedded within larger historical, social, and political contexts that influence reform efforts. Theories and policies that have dominated the thinking across the field for the last few decades are now being challenged as our society becomes increasingly diverse. As Gregg and Ferri (1996) note, such challenges are often positive, for “it is in times of questioning that marginalized voices and alternative visions become clearer, and existing theories can be seen with new perspectives” (p. 23). Questions about LD theory and practice have been prompted by sophisticated research methodologies, which researchers have used to further our understanding of LD across the lifespan. Ongoing studies in the fields of genetics and neuroanatomy, for example, are certainly providing a greater appreciation for the complexity of cognition and the multidimensional nature of learning.

Current debates surrounding the assessment and provision of services for individuals with LD afford us all an opportunity to reevaluate past practices within the context of new research. Yet, it is easy to recycle old ideas clothed in the latest fashions or to be swayed by trendy ideas that may lack validity. To avoid such pitfalls, professionals must seek to create frameworks in which the integration of past and current research will lead toward more effective assessment, intervention, and accommodation solutions. Although most professionals in the field of LD focus on children, the adult population is also critical to a full appreciation of the issues surrounding the conceptualization, diagnosis, and ramifications of LD. A review of recent research with the post-secondary population will provide the basis for our support of the continued measurement of specific cognitive and linguistic processing as part of the diagnostic methodology for LD.

The recent reauthorization of the Individuals With Disabilities Education Improvement Act of 2004 (IDEA; 2004) ignited a national dialogue focusing on the identification of reliable diagnostic methodologies for LD in the child and adolescent populations. Concern has been voiced as to the validity and efficacy of including broad and specific cognitive processing measures as central components of the eligibility criteria for LD (Fletcher & Reschly, 2005; Hale, Naglieri, Kaufman, & Kavale, 2004; Mather & Gregg, 2006; Mather, Gregg, & Simon, 2005; Naglieri, Hale, Kaufman, & Kavale, in press). At times, this debate has become quite passionate. It is important to remember that in any field, questioning current procedures is an essential aspect of best practice. Additionally, most professionals know that criticism of the use of cognitive processing as part
of the diagnostic methodology for LD is not novel to the field. During the 1970s, a similar national debate occurred between behavioral and cognitive-oriented researchers as to the predictive validity of cognitive processing measures. Through these (often contentious) discussions, both sides were able to reevaluate and enhance their frameworks, which resulted in more empirically reliable research for the field of LD. As Frith (1999) reminds us, contentiousness is often fueled by the fact that words and labels can “readily become loaded with ideology while the concepts they refer to may be perfectly non-contentious” (p. 193). Within the current debate, it may seem that terms such as intelligence, cognitive processing, or response to intervention (RTI) have taken on a life—and camps—of their own. However, identifying valid and reliable diagnostic methodologies for LD requires professionals to focus on problem solving rather than semantics or polemics.

One of the significant goals of the reauthorization of IDEA (2004) was to improve postsecondary results for students with disabilities by requiring public education to provide more effective transitional planning. Approximately 45% of graduating students with disabilities plan on some type of postsecondary training and about 55% have competitive employment as a primary transitional goal (NCSET, 2006). Under IDEA (2004), schools are now faced with the challenge of providing results-oriented, coordinated activities that will facilitate the transition of students with disabilities to postsecondary training or employment. The emphasis on transition has changed from simply outcomes to results-oriented solutions. In another departure from past legislation, IDEA 2004 includes a requirement that transition services be based on a student’s strengths as well as his or her weaknesses. Transitional planning must include the following: (a) appropriate measurable postsecondary goals based upon age-correct transitional assessments; (b) individualized goals reflecting the student’s strengths, preferences, and interests; and (c) a performance statement of the transition services needed to assist the student in reaching postsecondary goals. IDEA (2004) requires public schools to provide a Summary of Performance for students whose special education eligibility is terminating. The summary should include information on a student’s academic achievement and functional performance. Specific means for helping the student access postsecondary goals must be clearly articulated in the summary. While the public schools are not required to conduct an evaluation before terminating special education services for an individual, they will be required to ensure that students leave secondary schools with the documentation to gain access to support and services in post-school activities, such as higher education (Schwab, 2006).

Historically, significant disparity has existed in the type and comprehensiveness of documentation required for services at the secondary level and the postsecondary level. For instance, the requisite type of assessments (i.e., formal/informal assessments, curriculum-based measures [CBM], student work samples, and teacher observation), currency, and comprehensiveness of score reporting to document the presence of a disability differs across institutions. In addition, the documentation required to demonstrate a history of services (e.g., the duration, nature, and type of services and accommodations that have been provided) varies. The Summary of Performance required by IDEA (2004), however, can become an integral tool for positive transition if professionals utilize it to produce a results-oriented blueprint for a student’s future success rather than simply generating a précis of past school performance. It is important for professionals to carry out the spirit of IDEA (2004) rather than merely focusing on minimum legal requirements when facilitating the transition of secondary students with LD to postsecondary instruction or work environments. Notably, LD documentation at the postsecondary level requires evidence that cognitive and linguistic processes account for underachievement. Failure to respond to highly targeted and specific instruction (e.g., RTI) can provide further verification of cognitive and linguistic processing deficits. Access to accommodations will not be granted to students whose documentation lacks such information. Secondary students with LD (and their parents) will and should expect that the information in the Summary of Performance is adequate to satisfy the documentation criteria required.
under laws such as the Americans with Disabilities Act of 1990 (ADA) and Section 504 of the Rehabilitation Act of 1973.

The atmosphere today at the postsecondary level is extremely litigious, particularly regarding issues of accommodating adults with documented LD in the school or workplace. Recent court cases illustrate the nature of disagreements among professionals, across and within disciplines, as to the appropriateness of competing eligibility models (e.g., cutoff, discrepancy, and clinical). However, broad and specific cognitive processing measures remain a significant component of the majority of postsecondary eligibility models, and therefore decision-making, for determining who is qualified to receive accommodations due to LD (Gregg, Scott, McPeek, & Ferri, 1999). Because of this, professionals who work with the adult population are closely following the debate at the K-12 level as it relates to LD diagnostic methodologies. During the reauthorization of IDEA (2004), the validity of using intelligence composite scores in determining LD eligibility was vigorously contested by many professionals.

Broad Cognitive Ability Measures

Critical to any broad cognitive ability measure is the degree to which empirical research and theory support the validity of sources. The Standards for Educational and Psychological Testing (1999) identifies substantive, internal, and external validity. Benson (1998) states that a strong psychological theory enhances substantive (content) validity through the identification of a well-bounded construct domain, a guide for developing measures in the empirical domain. The way in which broad and specific cognitive abilities are defined and operationalized often differs across psychometric instruments, however. The competing theoretical and measurement (empirical) constructs inevitably yield varying results, a truth that warrants serious attention in the debate about the validity of using intelligence test composite scores as central components of eligibility criteria.

Researchers investigating intelligence across the lifespan have consistently found a magnitude of difference across intelligence test composite scores and indices both within and across groups (Floyd, Clark & Shadish, 2004; Gregg, Davis, Coleman, Jordan, & Hoy, 2006). Such findings may appear confusing to professionals when the technical manuals for these measures provide strong evidence for internal consistency coefficients, test-retest reliability, and correlation coefficients across instruments of broad ability. Gregg et al. (2006) studied a population of college students with and without dyslexia and found that while the correlations among three intelligence measures were statistically strong, 20–30 percent of the variance remained unexplained. One reason for differences between intelligence measures is that any two instruments may differ substantially in the abilities they tap. For example, other tests relevant to the assessment of adults are as follows: (a) the Kaufman Adolescent and Adult Intelligence Test (KAIT; Kaufman & Kaufman, 1993) Composite score is based on measures of two factors; (b) the Wechsler Adult Intelligence Scale-III (WAIS-III; Wechsler, 1997) FSIQ is based on four factors; (c) the Stanford-Binet Intelligence Scales (SB5; Roid, 2003) FSIQ is based on five factors; (d) and the Woodcock-Johnson III Tests of Cognitive Abilities (WJ III; Woodcock, McGrew, and Mather, 2001) GIA is based on seven factors or broad abilities. As a result, any given individual might score lower (or higher) on one intelligence test than another. When LD eligibility models are dependent on strict numerical ability and achievement discrepancies (e.g., American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 1994), many decisions may be a function of the “ability” of the instrument selected.

Another contributor to differences found across broad ability composite scores is the fact that intelligence measures do not all use comparable methods to convert subtest scores into composite scores. The composite and index scores for many of the commonly used intelligence tests (e.g., WAIS-III, Reynolds Intellectual Assessment Scales [RIAS]; Reynolds & Kamphaus, 2003) are
computed using equal weights, allotting each subtest equal influence on the total score. However, for composite and cluster scores on the WJ III, principal component analysis was used to determine the best weighted combination of tests that accounted for the largest portion of the variance in each age group (McGrew & Woodcock, 2001). Use of reliable component analysis or the weighting of subtests that comprise composite scores leads to a lower correlation between the composite score and contributing subtests. Such an approach provides “more potential incremental and discriminate validity and more reliable difference scores, resulting in a more precise confidence interval” (Caruso & Cliff, 1999, p. 205). Reliable component analysis appears to be a valuable tool in the construction of psychometric instruments. As long as competing tests use different score conversion procedures, however, magnitude of difference problems will persist.

The lack of exchangeability of intelligence scores evident within the general population is even more significant for individuals with LD. Gregg et al. (2006) found for normally achieving college students, there was a 7 point difference between WAIS-III and WJ III composite scores. This discrepancy increased to 10 points for college students demonstrating dyslexia. More moderate yet statistically significant differences were present between the KAIT and WJ III (3 points for normally achieving and 5 points for students with dyslexia) and between the KAIT and WAIS-III (4.5 points for normally achieving and 5 points for dyslexic students). The Gregg et al. (2006) study was conducted prior to publication of the SB5; however, data from the Technical Manual (McGrew, K.S. & Woodcock R.W., 2001) shows a difference of 6.5 points between SB5 FSIQ and WAIS-III FSIQ in the validation sample of 87 adults (presumably without a history of dyslexia). Clinicians who use composite scores to determine eligibility—particularly within a discrepancy or cutoff model—are at risk for false positives and false negatives, which could constitute discrimination against specific groups of students. Thus the issue of lack of exchangeability is one that requires immediate attention from professionals working with students of all ages.

Specific Cognitive Processing Abilities

At the K-12 level, the validity of using specific cognitive processing ability measures as critical component—the diagnostic methodology for LD—has recently been challenged. For example, Fletcher and Reschly (2005) argue that, at best, “meager evidence” exists to support the assessment of cognitive processes for LD identification or intervention (p. 17). However, other professionals working with the K-12 population have contradicted this view (Evans, Floyd, McGrew, & Leforgee, 2002; Flanagan & Kaufman, 2004; Floyd, Evans, & McGrew, 2003; Hale, Fiorello, Kavanagh, Hoeppner, & Gaitherer, 2001; Kavale, Fuch, & Scruggs, 1994). At the adult level, research pertaining to the concurrent or predictive validity of specific cognitive processing measures has provided important information that is surely pertinent to the ongoing K-12 debate.

First, evidence is available that postsecondary students with LD can be differentiated from their normally achieving peers based on measures of specific cognitive processing (Gregg et al., 2006). In addition, results from current research show that the predictive relationships of cognitive processes to learning are influenced by diagnostic category (Gregg, Hoy, Flaherty, Norris, Coleman, Davis, & Jordan, 2005). In order to examine this pattern more concretely, we have provided in Table 1 the functional cognitive processing differences across adults with and without LD on the WAIS-III Indices and the WJ III COG Clusters. As can be noted, the normally achieving adults’ performance of many tasks (language-based or otherwise) appears to be significantly related to word knowledge. By contrast, for the adults with LD, working memory and processing speed abilities were most predictive of performance. These patterns suggest underlying group differences that are (1) detectable without the use of achievement tests and (2) reflective of differential neurological functioning. If Dombrowski, Kamphaus, and Reynolds (2004) were correct in assuming that LD is a developmental delay, we should see differences between adults with and without
LD on only measures of achievement, not on measures of cognitive and linguistic processing. Table 1 illustrates not only that there are differences in functional processing between the groups but that the adults with LD appear to use less efficient cognitive and linguistic processes than do their peers without disabilities. This would be consistent with the theory that, in response to organic flaws (i.e., lesions), the LD brain must forge alternative and less direct pathways to process certain kinds of stimuli.

Some professionals might argue that the reason for the group differences illustrated in Table 1 is simply differential ability. Using this logic, one would assume it impossible to differentiate the cognitive or linguistic processes influencing performance for adults with Attention Deficit/Hyperactivity Disorder (AD/HD) as compared to individuals with LD. However, researchers have documented that adults with AD/HD appear to present a different profile in relation to the predictive strength of linguistic processes to achievement than their peers with LD or with no disabilities (Gregg, Coleman, & Davis, 2002). Investigating the dimensionality of phonological and orthographic tasks for college students with and without dyslexia and AD/HD, Gregg et al. (2005) found that the populations with AD/HD, LD, and no disabilities significantly differed across task correlations, significantly influencing factor structures. Again, if cognitive and linguistic processes had little construct or predictive validity, there would have been no differences between these groups of adults.

Cognitive and Linguistic Predictors of Achievement

The fact that measures of cognitive and language abilities predict performance on specific academic tasks has direct implications for instruction and appropriate selection of accommodations. For example, researchers have identified tests of linguistic fluency as the most discriminating

Table 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Dyslexic</td>
<td>Dyslexic</td>
<td>Non-Dyslexic</td>
<td>Dyslexic</td>
<td>Non-Dyslexic</td>
<td>Dyslexic</td>
<td>Non-Dyslexic</td>
<td>Dyslexic</td>
<td>Non-Dyslexic</td>
<td>Dyslexic</td>
<td>Non-Dyslexic</td>
</tr>
<tr>
<td>WJ III Verbal Ability</td>
<td>.75**</td>
<td>.57**</td>
<td>.56**</td>
<td>.46**</td>
<td>.54**</td>
<td>.15</td>
<td>.12</td>
<td>.15</td>
<td>.12</td>
<td>.15</td>
<td>.12</td>
</tr>
<tr>
<td>WJ III Long-Term Retrieval</td>
<td>.36</td>
<td>.13</td>
<td>.34</td>
<td>.37**</td>
<td>.18</td>
<td>.38**</td>
<td>.21</td>
<td>.15</td>
<td>.13</td>
<td>.13</td>
<td>.13</td>
</tr>
<tr>
<td>WJ III Visual-Spatial Thinking</td>
<td>.52**</td>
<td>.15</td>
<td>.40*</td>
<td>.57**</td>
<td>.09</td>
<td>.15</td>
<td>.13</td>
<td>.13</td>
<td>.13</td>
<td>.13</td>
<td>.13</td>
</tr>
<tr>
<td>WJ III Fluid Reasoning</td>
<td>.50**</td>
<td>.51**</td>
<td>.55**</td>
<td>.56**</td>
<td>.26</td>
<td>.35*</td>
<td>.29</td>
<td>.06</td>
<td>.55**</td>
<td>.36</td>
<td>.55**</td>
</tr>
<tr>
<td>WJ III Processing Speed</td>
<td>.03</td>
<td>.08</td>
<td>.22</td>
<td>.28*</td>
<td>.17</td>
<td>.26</td>
<td>.36</td>
<td>.06</td>
<td>.08</td>
<td>.36</td>
<td>.06</td>
</tr>
<tr>
<td>WJ III Short-Term Memory</td>
<td>.21</td>
<td>.11</td>
<td>.20</td>
<td>.18</td>
<td>.38*</td>
<td>.62**</td>
<td>.17</td>
<td>.06</td>
<td>.08</td>
<td>.36</td>
<td>.17</td>
</tr>
<tr>
<td>WJ III Working Memory</td>
<td>.26</td>
<td>.16</td>
<td>.28</td>
<td>.29*</td>
<td>.41*</td>
<td>.67**</td>
<td>.22</td>
<td>.08</td>
<td>.38*</td>
<td>.51**</td>
<td>.38*</td>
</tr>
<tr>
<td>WJ III Cognitive Fluency</td>
<td>.34</td>
<td>-.00</td>
<td>.33</td>
<td>.15</td>
<td>.11</td>
<td>.22</td>
<td>.38*</td>
<td>.51**</td>
<td>.38*</td>
<td>.51**</td>
<td>.38*</td>
</tr>
<tr>
<td>WJ III Cognitive Efficiency</td>
<td>-.05</td>
<td>.11</td>
<td>.18</td>
<td>.24</td>
<td>.29</td>
<td>.60**</td>
<td>.30</td>
<td>.31*</td>
<td>.30</td>
<td>.31*</td>
<td>.30</td>
</tr>
<tr>
<td>WJ III Phonemic Awareness</td>
<td>.27</td>
<td>.18</td>
<td>.22</td>
<td>.23</td>
<td>.28</td>
<td>.23</td>
<td>.11</td>
<td>.19</td>
<td>.11</td>
<td>.19</td>
<td>.11</td>
</tr>
</tbody>
</table>

*Correlation is significant at the 0.01 level (2-tailed).
**Correlation is significant at the 0.001 level (2-tailed).
measures in differentiating adult populations with and without dyslexia (McGrew, Ford, & Woodcock, 2002). Similarly, researchers have identified measures of word knowledge, as well as phonological, orthographic, morphological, and grammatical awareness, as significant predictors of decoding and spelling performance (Bruck, 1993; Gregg et al., 2002; Carlisle & Rice, 2002). Certainly, findings from current research indicate that adults with and without LD apparently utilize different cognitive and linguistic processes to perform achievement tasks. For instance, Gregg et al. (2005) found that on measures of reading and spelling of both real words and nonsense words, normally achieving college students’ word knowledge better predicted their performance. For the population with LD, different patterns emerged: for the reading of real words, linguistic fluency and phonological awareness better predicted their performance; for the reading of made-up words, cognitive efficiency, inferential reasoning, and linguistic fluency were the strongest predictors. Measures examining the spelling of real and made-up words again indicated that the population without dyslexia draws almost exclusively upon word knowledge (i.e., vocabulary and inferential reasoning). For the population with dyslexia, skill at spelling real words was best predicted by performance on linguistic fluency tests, while skill at spelling pseudowords was best predicted by performance on linguistic fluency and phonological and orthographic awareness measures. What can be summarized from the adult literature is that different cognitive and linguistic processes are predictive of basic achievement skills depending upon whether an individual does or does not have LD.

Critical Issues

The Americans with Disabilities Act (ADA, 1990) requires “a highly individualized assessment of the effect the impairment [LD] has on that person’s life—the condition, manner, or duration in which one performs a major life activity [learning]” (Mather, Gregg, & Simon, 2005, p. 139). Under the ADA, a disability is defined as a substantial limitation to one or more major life activities of an individual. *Substantial limitation* is defined as an inability or significant restriction in the *condition, manner or duration* in which one performs a major life activity as compared to *most people* (28 C.F.R. Pt. 35, App. A 35.104). Understanding the intended meanings of the terms *substantial limitation* and *most people* is central to diagnostic methodologies at the postsecondary level. We find it interesting that the critical issues raised during the reauthorization of IDEA (2004) pertaining to LD eligibility criteria are similar to ongoing concerns about the provision of appropriate accommodations for adults. The validity of broad and specific cognitive processing measures in LD diagnostic criteria constitutes a central question in these discussions. However, the validity of cognitive processing measures is really indirectly related to these debates. The direct issues being challenged include three major points: (a) the relationship of LD to achievement, (b) the role of clinical judgment in eligibility criteria, and (c) the purpose of diagnostic assessments. We will explore these three issues with regard to the adult population, leaving the reader to draw parallels pertinent to the ongoing debates with the K-12 population.

Relationship of LD to Achievement

High-functioning adults with LD face significant barriers when attempting to access accommodations. Some professionals appear to have difficulty understanding how a bright and high-achieving person can also demonstrate LD. Legally, to access an accommodation an adult must demonstrate a *substantial limitation* as compared to the *general population*. The term substantial limitation has been interpreted differently by several recent court cases pertaining to adults with LD. One perspective stresses that for an individual with LD, substantial limitation literally means functioning below the statistical average, based on achievement scores derived from a bell-curve
metric (i.e., below the 16th percentile). Within this perspective, therefore, underachievement is synonymous with LD (Flanagan, Keiser, Bernier, & Ortiz, 2003).

Through years of special tutoring and persistence, however,—as well as the statistical thread of regression to the mean—some individuals with LD can improve enough academically to “break” the 16th percentile barrier, thus appearing to have compensated for their disability. But this does not mean that a disability is no longer present, only that a person has managed to achieve a certain level of academic success on some measure(s). In addition, the context, task demands, and format of a test can influence an individual’s performance (e.g. use of a multiple-choice format might lead to an overestimate of functional skill). The ADA does not indicate that low performance or poor outcomes should determine whether a person has a disability. Such a perspective equates LD with low intelligence or low achievement (or both). Underachievement defined as a score below the 16th percentile on specific measures of achievement is an overly simplistic eligibility criteria that results in a high false positive rate for low-achieving adults and a high false negative rate for high-achieving individuals (Brackett & McPherson, 1996; Hoy, Gregg, Wisenbaker, Bonham, King & Moreland, 1996).

Intertwined with inconsistency among court interpretations of substantial limitations are concerns about using the comparison group (i.e., nondisabled) as the standard for typical functioning. For instance, should a college graduate taking the Law School Admission Test (LSAT) be compared to all adults in the general population (some having never graduated from high school) or his or her peers? If the proper comparison group is the general population, then one could argue that individuals with LD might never have the opportunity to access accommodations in professional schools because their scores would not appear significantly discrepant from those of the general population. However, as Mather, Gregg, & Simon (2005) state, one should not “conflate the comparison group with what is being compared—what is being compared is the condition, manner, and duration in which one performs an activity, not the actual resulting achievement itself” (p. 139). Thus the presence of underachievement should never be the sole indicator of LD.

Adults with LD typically present an uneven profile of abilities, demonstrating difficulties with some types of learning but ease with other areas of performance. Within most definitions, LD is described as a disorder involving some (but not all) basic cognitive and linguistic processes. Thus to differentiate LD from low achievement one must employ an assessment that will permit cognitive-achievement, intra-cognitive, and inter-achievement comparisons. Specific cognitive and linguistic processes are central to determining the likely cause of underachievement. A further consideration is that different cognitive and linguistic processes may have a greater or lesser impact depending on the age of the person and the type of task (Floyd et al., 2004; McGrew & Woodcock, 2001).

The essence of LD assessment is documentation of cognitive and linguistic integrities in the presence of processing deficits that result in unexpected learning failure (Kavale, Kaufman, Naglieri, & Hale, 2005). For instance, imagine two adults, both of whom read a list of words at the 30th percentile—a score within the normal range on a bell curve. What would not be evident from a score comparison is that one adult, John, took three times longer to read the words due to halting self-corrections. In addition, he performed poorly on measures of phonological and orthographic awareness. The second adult, Mary, read the words quickly (though she did not recognize some) and performed all measures of phonological and orthographic awareness with no difficulty. Thus the manner in which the act of reading was performed, as well as performance on cognitive and linguistic processing measures, would allow an examiner to determine that John, not Mary, demonstrates a significant LD and should have access to accommodations.

Because simple score comparisons or cutoff criteria to determine LD do not provide accurate or complete information for accommodation selection decisions, further information is needed.
For instance, using an RTI approach—along with measures of cognitive and linguistic processing to identify students as LD—keeps the assessment focus on the student’s learning. Using instructionally relevant assessment involves systematic testing of instructional adaptations and modifications. In the previous example, extended time on tests would more than likely help John but not Mary. Regarding test modifications, there persists a misconception that an accommodation (e.g., extended time) has a primary influence on test performance. Such a premise leads to the faulty assumption that an accommodation would lead to an increase in performance for any student who received it. Cohen, Gregg, and Deng (2005) found that students for whom items were functioning differently were not accurately characterized by their accommodation status, but rather by their content knowledge and skills. In other words, the students’ performance was a function of their lack of knowledge and skills, not who did or did not use accommodations.

Role of Clinical Judgment

The National Joint Committee on Learning Disabilities (NJCLD) several years ago provided an excellent critique of the importance of clinical judgment in LD diagnostic methodology (NJCLD, 1997). The key to valid LD identification rests with trained professional judgment, not the test battery or test paradigm (Bateman, 1992). A clinician must consider the environmental, biological, cognitive, language, and behavioral signs influencing an individual’s ability to learn tasks in a specific context. But the quantity of information gathered by the clinician is not the key to accurate assessment. Rather, the critical factor in effective diagnosis is the expertise and experience of the clinician in comparing, contrasting, and interpreting the obtained results. The evaluator is the reliability factor, not the diagnostic instruments or quantity of background information.

With regard to high-stakes tests (e.g., Medical College Admission Test [MCAT], LSAT), current documentation requirements for LD at the adult level often require much more historical and current psychoeducational assessment than what is required to document other disabling conditions. Although important to establish, underachievement (e.g., performance less than the 16th percentile and historical documentation of having accessed accommodations in elementary or secondary school) appears to carry a disproportionate amount of weight in board-established eligibility criteria. Eligibility criteria that rely heavily on simple discrepancy and arbitrary achievement cutoff points, with little consideration of cognitive processing or clinical judgment, essentially take the clinician out of the diagnostic formula. Without a balance between statistical data and clinical observations, the individual (child or adult) becomes secondary to policy and decontextualized number crunching.

Purpose of Assessment

At the postsecondary level, the primary purpose of an evaluation is to provide an adult with documentation to access accommodations. Accommodation selection should be based on an individual’s profile of strengths and weaknesses. The role of specific cognitive and linguistic processing measures is critical to the process of selecting accommodations. For example, imagine that two students received standardized scores at the 16th percentile on a reading fluency test. Jim, an adult with dyslexia, performed poorly due to deficits in orthographic and morphological awareness. Accommodations such as extended time or screen readers might be very appropriate and effective. However, Tim, an adult with AD/HD, appeared to have difficulty on the reading fluency test due to sustained attention and comprehension monitoring. For this student, an accommodation such as extended time would probably not be effective. Rather, periodic breaks during long reading tasks and access to a quiet learning environment might better allow him to demonstrate his knowledge. If an examiner did not include measures of cognitive and linguistic processing in
cases like these, individual variability would be lost, leading to scripted and ineffective decision-making procedures for selecting appropriate accommodations (Goodenough, 2001; Gregg, Coleman, Davis, & Chalk, in press).

CONCLUSIONS

Based on the evidence and examples discussed here, we strongly support the use of specific cognitive and linguistic processing measures in the assessment of adults with LD. We consider intra- and inter-cognitive and achievement scatter to be central to the definition of LD. Above all, we can safely conclude from past research and practice that the isolated use of markers such as an ability-achievement discrepancy or cutoff-based underachievement do not constitute valid procedures for identifying or ruling out LD.

Current dialogue stemming from the reauthorization of IDEA, as well as ongoing ADA litigation, provides us all an opportunity to reexamine the effectiveness of assessment procedures and services for adults with LD. Currently, documentation criteria at the adult level require an extensive amount of background and current psychoeducational information to support diagnosis and access to accommodations. One result of such demanding criteria is that individuals without sufficient financial support systems will not gain access to accommodations at institutions of learning or the workplace. For this and other reasons, it is time that professionals reexamine the validity and fairness of existing documentation criteria. In addition, more research is needed to identify the best predictors of LD across profiles (e.g., math, reading, written expression). As noted earlier, no sheer quantity of evaluation tests will guarantee a more reliable diagnosis. A comprehensive but selective approach to assessment that incorporates historical data, cognitive processing measures, achievement tests, and clinical judgment will allow us to make accurate diagnoses and select appropriate accommodations.

The population of adults with LD is a minority group and must be ensured all rights to access social, education, and vocational contexts regardless of severity level. Inequities, restrictions, and barriers tend to be products of political decisions (Hahn, 1987). We find it interesting that racial and sexual discrimination are seen as social injustices, yet disabilities—particularly “invisible” disorders in otherwise impressive individuals—are often still framed as biological and personal injustices (Fine & Ash, 1988; Gregg & Ferri, 1996). High-functioning adults with LD deserve the same rights and protections that are provided to low ability adults with LD. Within a minority model, solutions do not lie solely with the individual but in the eradication of bias, segregation, and discrimination.

Professionals concerned about services for adults with LD are encouraged to shift some of their focus from service to public policy. The LD deficit then shifts from being considered only within the individual to being equally represented in the environment (i.e., universal design) and attitudes of society. Solutions to effective assessment and eligibility models are not to be found only by addressing the needs of more sophisticated instruments or better training of clinicians. Challenging stereotypes, oppression, and institutional policies that perpetuate simplistic and incorrect views of the construct of LD will be necessary for real reform to take place.

REFERENCES

Psychology in the Schools DOI: 10.1002/pits