A Review of Functional Neuroanatomy

Christine L. Castillo, Ph.D., LSSP
Children’s Medical Center Dallas
UT Southwestern Medical Center

Copyright Notice

- All information distributed in this presentation should be considered copyrighted. Therefore, this material should not be distributed in any other manner than what is provided for use by the individual webinar participant.

Copyright © 2011 Christine L. Castillo
All Rights Reserved
Presentation Outline

• Directionality and Orientation
• CNS Basics
• Brain Divisions
• Cortical Divisions
• CSF and Ventricular System
• Vasculature and Cerebral Blood Flow

Objectives

• Participants will readily identify the major cortical and subcortical structures within the central nervous system.
• Participants will be able to discuss the functions of specific neuroanatomical structures.
• Participants will be able to effectively describe primary pediatric neurological disorders along with the neuroanatomical correlates and behavioral symptomatology.
Presentation Outline

- Directionality and Orientation
- CNS Basics
- Brain Divisions
- Cortical Divisions
- CSF and Ventricular System
- Vasculature and Cerebral Blood Flow

Directional Terms: General

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventral</td>
<td>toward the belly/front</td>
</tr>
<tr>
<td>Lateral</td>
<td>toward the side</td>
</tr>
<tr>
<td>Anterior</td>
<td>toward the front</td>
</tr>
<tr>
<td>Rostral</td>
<td>toward the nose</td>
</tr>
<tr>
<td>Superior</td>
<td>above</td>
</tr>
<tr>
<td>Proximal</td>
<td>located close by</td>
</tr>
<tr>
<td>Ipsilateral</td>
<td>on the same side</td>
</tr>
<tr>
<td>Dorsal</td>
<td>toward the top/back</td>
</tr>
<tr>
<td>Medial</td>
<td>toward the middle</td>
</tr>
<tr>
<td>Posterior</td>
<td>toward the back</td>
</tr>
<tr>
<td>Caudal</td>
<td>toward the tail</td>
</tr>
<tr>
<td>Inferior</td>
<td>below</td>
</tr>
<tr>
<td>Distal</td>
<td>located more distant</td>
</tr>
<tr>
<td>Contralateral</td>
<td>on the opposite side</td>
</tr>
</tbody>
</table>
Directional Terms: Orientation Specific

<table>
<thead>
<tr>
<th>Above the Midbrain</th>
<th>Below the Midbrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior = Rostral</td>
<td>Anterior = Ventral</td>
</tr>
<tr>
<td>Posterior = Caudal</td>
<td>Posterior = Dorsal</td>
</tr>
<tr>
<td>Superior = Dorsal</td>
<td>Superior = Rostral</td>
</tr>
<tr>
<td>Inferior = Ventral</td>
<td>Inferior = Caudal</td>
</tr>
</tbody>
</table>
Anatomical Planes

- **Coronal**
 - Splits the front and back of the brain
 - Shows structures as seen from the front or back

- **Sagittal**
 - Splits the hemispheres
 - Shows structures as seen from the side

- **Horizontal**
 - Parallel to the floor
 - Shows structures as seen from above
Presentation Outline

- Directionality and Orientation
- **CNS Basics**
- Brain Divisions
- Cortical Divisions
- CSF and Ventricular System
- Vasculature and Cerebral Blood Flow
Central Nervous System (CNS)

- The CNS consists of:
 - Brain
 - Spinal Cord

Brain Basics

- Foramina
- Fossae
- Meninges
- Spaces
Brain Basics: Foramina

- Holes in skull allowing cranial nerves, spinal cord, and blood vessels to enter and leave cranial cavity
- Foramen magnum
 - Largest hole
 - At base of skull
 - Cervicomedullary junction

Brain Basics: Fossae

- Anterior fossa
 - Divided from middle fossa by lesser wing of the sphenoid bone
- Middle fossa
 - Divided from posterior fossa by petrous ridge of temporal bone, and sheet of meninges
- Posterior fossa
Brain Basics: Foramina and Fossae

Herniation
- Causes:
 - A lesion displaces structures so they are shifted from one compartment to another
- Congenital causes:
 - Arnold-Chiari malformation
Brain Basics: Foramina and Fossae

Herniation

• Types:
 • Transtentorial herniation
 • Herniation of medial temporal lobe
 • Central herniation
 • Downward displacement of brainstem
 • Subfalcine herniation
 • Displacement of cingulate gyrus and other nearby structures under falx cerebri

• Can cause:
 • Mass effect
 • Midline shift
 • Effacement
Mass Effect and Midline Shift

Brain Basics: Foramina and Fossae
Herniation

- Symptoms
 - Headache, vomiting, nausea, vision problems, and altered mental status
 - Uncal herniation clinical triad:
 - Blown pupil
 - Hemiplegia
 - Coma
Brain Basics: Foramina and Fossae Herniation

- Treatments
 - Neurosurgery to remove lesion
 - Decompression surgery
 - Shunt placement to control CSF flow

Brain Basics: Meninges

- Final layers within skull
- From inside to outside (PAD):
 - Pia
 - Arachnoid
 - Dura
Brain Basics: Meninges

• Pia
 • Thin layer of cells
 • Adheres closely to brain surface
 • Surrounds initial portion of each blood vessel at it enters brain surface
Brain Basics: Meninges

- Arachnoid ("spidery")
 - Adheres to inner surface of dura
 - Within arachnoid, CSF "percolates" over the surface of the brain

Brain Basics: Meninges

- Dura ("hard")
 - 2 fibrous layers
 - Periostal layer: adheres to inner surface of skull
 - Meningeal layer: fused with periostal layer except where it forms folds that descend into cranial cavity, where it occurs at the:
 - Falx cerebri
 - Tentorium cerebelli
Brain Basics: Meningitis

- Inflammation of the membranes that cover the brain and spinal cord
- Two types:
 - Bacterial: bacteria gain access to the meninges through the bloodstream, originating from infection elsewhere
 - Viral: due to other viral infections

Brain Basics: Meningitis

- Bacterial meningitis
 - Symptoms: meningeal irritation
 - CSF has high white blood cell count
 - Treatment: depends on age, antibiotics initiated quickly
Brain Basics: Meningitis

- Viral meningitis
 - Less intense and rapid than bacterial meningitis
 - Symptoms: meningeal irritation
 - Diagnosis: elevated white blood cell count, mildly elevated protein, normal glucose, EEG – periodic sharp waves over temporal lobes

Brain Basics: Meningitis

- Viral meningitis
 - Recovery occurs spontaneously in 1-2 weeks
 - Different than viral encephalitis
 - Different than meningoencephalitis
Brain Basics: Spaces

- Potential spaces formed by meninges
- Blood vessels within these spaces can cause hemorrhage
- Three types:
 - Epidural space
 - Subdural space
 - Subarachnoid space

Brain Basics: Spaces

- Epidural space
 - Between inner surface of skull and dura
 - Contains middle meningeal artery
 - Branch of the external carotid artery
 - Supplies the dura
 - Enters the skull through the foramen spinosum
Brain Basics: Spaces

- **Subdural space**
 - Between inner layer of dura and arachnoid
 - Bridging veins
 - Drain cerebral hemispheres
 - Pass through on the way to dural venous sinuses
- **Dural venous sinuses**
 - Lie enclosed within 2 layers of dura
 - Drain blood via the sigmoid sinuses to the internal jugular veins

Brain Basics: Spaces

- **Subarachnoid space**
 - Filled with CSF
 - Major arteries travel within and send smaller branches inward
Spinal Cord Basics

- Part of the CNS found within the spinal column
- Communicates with the sense organs and muscles below the level of the head
- Injuries
 - Crush or sever the spinal cord and the brain loses motor control over parts of the body at and below the injured area

Spinal Cord Basics

- Bell-Magendie Law:
 - The entering (afferent) dorsal roots carry sensory information to the brain
 - Dorsal root ganglia
 - The exiting (efferent) ventral roots carry motor information to the muscles and glands
Spinal Cord Basics

• The spinal cord is comprised of:
 • Gray matter
 • White matter
 • Each segment sends sensory information to the brain and receives motor commands
Spinal Cord Basics: Spina Bifida

- Lower neural tube closure defects
- Types
 - Spina bifida occulta
 - Spina bifida cystica
Spina Bifida Occulta

- Asymptomatic spinal lesion discovered incidentally
- Abnormal fusion of spinal lumbar vertebra
- Often asymptomatic
- No documented cognitive deficits

Spina Bifida Cystica

- Spinal defect that includes a cystic-like sac, which may or may not contain the spinal cord
- Two types:
 - Meningocele
 - Myelomeningocele or meningomyelocele
Spina Bifida Cystica: Meningocele

- Meninges and skin protrude through lumbosacral spine defect to form CSF-filled bulge
- No protrusion of spinal cord
- May cause:
 - Gait impairment
 - Kidney and bladder problems
 - Loss of tissue barriers that protect CNS

Spina Bifida Cystica: Myelomeningocele/ Meningomyelocele

- Much more common
- Tangle of rudimentary spinal cord, lumbar and sacral nerve roots, and meninges protruding into sac
- Most all are MR and paraplegic
- Causes:
 - Autosomal recessive genetic abnormality
 - Also implicated are radiation, folic acid deficiency, toxins, and AEDs
Spina Bifida Cystica

Presentation Outline

• Directionality and Orientation
• CNS Basics
• **Brain Divisions**
 • Cortical Divisions
 • CSF and Ventricular System
 • Vasculature and Cerebral Blood Flow
Brain Divisions

• The brain can be divided into three major divisions:
 1. Hindbrain (Rhombencephalon)
 • Metencephalon
 • Myelencephalon
 2. Midbrain (Mesencephalon)
 3. Forebrain (Prosencephalon)
 • Diencephalon
 • Telencephalon

Hindbrain

• Consists of the:
 • Medulla
 • Pons
 • Cerebellum
• Located at the posterior portion of the brain
• Not the same as the brainstem
Hindbrain: Medulla

- Just above the spinal cord
- Could be regarded as an enlarged extension of the spinal cord
- Controls vital reflexes through cranial nerves

Hindbrain: Medulla

- Houses the direct voluntary motor pathway from the cortex to the spinal cord
- Cranial nerves
 - Allows the medulla to control sensations from the head, muscle movements in the head, and many parasympathetic outputs to the organs
Hindbrain: Pons

- Area where many axons cross from one side of the brain to the other
- Works in conjunction to increase arousal and readiness of other parts of the brain
- Along with the medulla, contains the reticular formation and raphe system
Hindbrain

• Reticular formation
 • Descending portion is one of several areas that controls motor areas of the spinal cord
 • Ascending portion sends output to the cerebral cortex increasing arousal and attention

• Raphe system
 • Sends axons to much of the forebrain
 • Increases or decreases the brain’s readiness to respond

Hindbrain: Cerebellum

• A structure located in the hindbrain with many deep folds
• Helps regulate motor movement, balance, and coordination
• Also important for shifting attention between auditory and visual stimuli
• Damage impairs rhythm/timing and ability to shift attention between auditory and visual stimuli
Midbrain

• The midbrain consists of:
 • Tectum
 • Superior colliculus and inferior colliculus
 • Tegmentum
 • Substantia nigra
• Lies in the middle of the brain surrounded by the forebrain

Midbrain: Tectum

• “Roof” of the midbrain
• Superior and inferior colliculi
 • Swellings on each side of the tectum
 • Important routes for sensory information
 • Superior: vision
 • Inferior: audition
Midbrain: Tegmentum

• “Covering, carpet”
• Intermediate level of the midbrain
• Includes
 • Nuclei for third and fourth cranial nerves (eye movements)
 • Parts of reticular formation
 • Extensions of the pathways between the forebrain and the spinal cord or hindbrain

Midbrain

• Substantia nigra
 • Lies dorsal to the cerebral peduncles
 • Gives rise to the dopamine-containing pathway that facilitates readiness for movement
 • SN pars compacta dopaminergic neurons deteriorate in Parkinson’s disease
Forebrain

- The most anterior and prominent part of the mammalian brain
- Consists of two cerebral hemispheres
- Consists of the outer cortex and subcortical regions
- Each side receives sensory information and controls motor movement from the contralateral side of the body
Forebrain

- Subcortical regions include the diencephalon structures
 - Thalamus
 - Hypothalamus
- Additional structures
 - Pituitary gland
 - Basal ganglia
 - Basal forebrain
 - Hippocampus
Forebrain: Thalamus

- Pair of structures in the center of forebrain
- Main source of input to the cerebral cortex
- Central switching/relay station for all sensory information to the cerebral cortex
Forebrain: Hypothalamus

- Small area near the base of the brain with widespread connections
- Communicates with the pituitary gland to alter the release of hormones
- Damage affects feeding, drinking, sexual behavior, temperature regulation, fighting, activity level and other motivated behaviors

Forebrain: Pituitary Gland

- Master endocrine gland
- Attached to the base of the hypothalamus by a stalk
 - Stalk contains neurons, blood vessels, and connective tissue
- Responds to messages sent by the hypothalamus
- Synthesizes and releases hormones into the bloodstream, which controls hormone release by other glands
Forebrain: Basal Ganglia

- Group of structures lateral to the thalamus
 - Caudate nucleus
 - Putamen
 - Globus pallidus
 - Substantia nigra
 - Subthalamic nucleus
- Also:
 - Nucleus accumbens (often paired with putamen)
 - Ventral pallidum

Forebrain: Basal Ganglia

- Organization
 - Striatum
 - Caudate
 - Putamen
 - Lentiform nucleus
 - Putamen
 - Globus pallidus
Forebrain: Basal Ganglia

- Has many connections to the frontal lobes
- Associated with aspects of memory and emotional expression
- Deterioration primarily causes movement disorders
 - Parkinson’s Disease
 - Huntington’s Chorea
Forebrain: Basal Forebrain

- Group of structures that lie on the ventral surface of the brain
- Receives information from the hypothalamus and basal ganglia
- Includes the nucleus basalis of Meynert
Forebrain: Limbic System

- Forms a border around the brain stem
- Consists of the:
 - Hypothalamus
 - Hippocampus
 - Olfactory bulb
 - Amygdala
 - Cingulate gyrus
- Mediates motivation, emotion, drives, and aggression

Forebrain: Hippocampus

- Large structure located between thalamus and cerebral cortex
- Critical for the formation of new memory
- Connected to the hypothalamus by the fornix
Forebrain: Movement Disorders

• Tics and Tourette’s Disorder
 • Tic = involuntary, rapid, sudden, nonrhythmic, stereotyped motor movement or vocalization
 • TS = multiple motor tics and at least 1 vocal tic

Forebrain: Movement Disorders

• Tics and Tourette’s Disorder
 • Due to:
 • Increased dopamine in the basal ganglia circuits
 • Also implicated:
 • Low serotonin levels
 • Low glutamate levels in the globus pallidus
 • Exacerbated by dopamine agonists
Forebrain: Movement Disorders

• Tics and Tourette’s Disorder
 • Treatment:
 • Neuroleptics that act as dopamine-receptive antagonists
 • Non-neurolopetics are usually tried first to avoid extrapyramidal side-effects

Forebrain: Movement Disorders

• Juvenile Huntington’s Disease
 • Autosomal dominant neurodegenerative disorder involving the basal ganglia and cerebral cortex
 • Excessive number of trinucleotide (CAG) repeats on chromosome 4
 • Having more than 50 CAG repeats is associated with juvenile onset
Forebrain: Movement Disorders

- Juvenile Huntington’s Disease
 - Tend to present with cerebellar symptoms, cognitive deterioration, seizures, and oral/motor dysfunction
 - Adult triad: chorea, cognitive disturbance, and psychiatric/behavioral disturbance
 - Outcome
 - The earlier the onset, the more progressive the disease
 - Eventual death

- Neurologic involvement:
 - Diffuse and regional cerebral atrophy, especially in the caudate nuclei, with loss of GABA-ergic neurons in the head of the caudate
 - For children, also involvement of the cerebellum and globus pallidus
Forebrain: Movement Disorders

- Juvenile Huntington’s Disease
 - Treatment:
 - Dopamine antagonists to reduce chorea
 - Anti-parkinsonian meds to manage rigidity
 - Botox to manage dystonia

Presentation Outline

- Directionality and Orientation
- CNS Basics
- Brain Divisions
- **Cortical Divisions**
- CSF and Ventricular System
- Vasculature and Cerebral Blood Flow
The Cerebral Cortex

- Outer surface of the cerebral hemispheres, divided into two halves
- Composed of grey matter
 - It contains mostly cell bodies and dendrites
 - White matter is formed by axons extending inward from cortex

The Cerebral Cortex

- Neurons from each hemisphere communicate with each other through several bundles of axons
 - Corpus callosum
 - Anterior commissure
- More highly developed in humans than other species
Corpus Callosum

Anterior Commissure
Comparison of Mammalian Brains

The Cerebral Cortex

- Organization of the cerebral cortex
 - Contains up to six distinct laminae that are parallel to the surface of the cortex
 - Cells of the cortex are also divided into columns that lie perpendicular to the laminae
The Cerebral Cortex

- The four lobes of the cortex are:
 - Occipital
 - Parietal
 - Temporal
 - Frontal
Areas of the Human Cortex
The Cerebral Cortex: Occipital

- Located at the posterior end of the cortex
- Also known as the:
 - Striate cortex, or
 - Primary visual cortex
- Highly responsible for visual input
- Damage can result in cortical blindness

The Cerebral Cortex: Parietal

- Between occipital lobe and the central sulcus
- Contains the primary somatosensory cortex
 - Touch sensation
 - Muscle-stretch
 - Joint position information
The Cerebral Cortex: Parietal

- Responsible for processing and integrating information from information sent from muscles and joints about
 - Eye position
 - Head position
 - Body position

The Homunculus
The Homunculus: Motor and Sensory Cortex

- Located on the lateral portion of each hemisphere near the temples
- Important for processing of auditory information
- Responsible for complex aspects of vision, perception of movement and face recognition, and some emotional and motivational behaviors
- Damage may lead to Klüver-Bucy syndrome

The Cerebral Cortex: Temporal
The Cerebral Cortex: Frontal

- Extends from the central sulcus to the anterior limit of the brain
- Contains the:
 - Prefrontal cortex
 - Precentral gyrus

The Cerebral Cortex: Frontal

- Prefrontal cortex
 - Most anterior portion of the frontal lobe
 - Important for executive functions
 - Allows for regulation of impulsive behaviors and the control of more complex behaviors
 - Integration center for all sensory information and other areas of the cortex
Prefrontal Cortex Species Differences

Prefrontal Cortical Injury: The Example of Phineas Gage
Prefrontal Cortical Injury: The Example of Phineas Gage
The Cerebral Cortex

- Various parts of the cerebral cortex do not work independently of each other
 - All areas of the brain communicate with each other
 - There is no single central processor that integrates all functions
Papez Circuit

Reward Circuit
Presentation Outline

• Directionality and Orientation
• CNS Basics
• Brain Divisions
• Cortical Divisions
• **CSF and Ventricular System**
• Vasculature and Cerebral Blood Flow

CSF and the Ventricular System

• Cerebral spinal fluid (CSF)
 • Purpose
 • Assists in cushioning the brain
 • Provides a reserve for hormones and nutrition
 • Travels around the brain and spinal cord in subarachnoid space
 • Total volume in an adult = 150 cc
CSF and the Ventricular System

- CSF
 - Formed by the choroid plexus
 - Vascular structure lined with choroid epithelial cells
 - Exits system via foramina in fourth ventricle
 - Lateral foramina of Luschka
 - Midline foramen of Magendie
 - Reabsorbed by arachnoid granulations into dural venous sinuses back into the bloodstream
CSF and the Ventricular System

- CSF fills the:
 - Central canal
 - Channel in the center of the spinal cord
 - Space between the brain and meninges
 - Membranes that surround the brain and spinal cord
 - Four ventricles

CSF and the Ventricular System

- 2 lateral ventricles
 - Communicates with third ventricle via foramen of Monro
- Third ventricle within diencephalon
 - Communicates with fourth ventricle via cerebral aqueduct
- Fourth ventricle
 - Surrounded by pons, medulla, and cerebellum
CSF and The Ventricular System: Hydrocephalus

- Caused by:
 - Obstruction of flow
 - Decreased reabsorption
 - Excess CSF production
- Congenital causes:
 - Neural tube defect
 - Dandy-Walker Syndrome
 - Aqueductal stenosis
 - Intraventricular hemorrhage
CSF and The Ventricular System: Hydrocephalus

• Types:
 • Communicating: impaired reabsorption, obstruction of flow in subarachnoid space, or excess production
 • Noncommunicating: obstruction of flow within ventricular system
 • Normal pressure: chronically dilated ventricles without increased CSF pressure
 • Ex vacuo: excess CSF in region where brain tissue has been lost
Hydrocephalus Ex Vacuo

CSF and The Ventricular System: Hydrocephalus

- Symptoms
 - Headache, nausea, vomiting, cognitive impairment, decreased vision due to increased ICP
 - Magnetic gait and incontinence
 - Eye movement abnormalities
CSF and The Ventricular System: Hydrocephalus

• Symptoms
 • Skull expansion and increased head circumference in infants, with bulging anterior fontanelle
 • For NPH, clinical triad:
 • Incontinence, gait difficulties, and mental decline

CSF and The Ventricular System: Hydrocephalus

• Treatments
 • Ventriculostomy
 • Fluid from lateral ventricles drained to bag
 • VP shunt
 • Shunt tube passed from lateral ventricle out of skull and tunneled under skin to drain into cavity of abdomen
 • Third ventriculostomy
 • Endoscope passes through right frontal lobe, right ventricle, and foramen of Monro to third ventricle
 • Then a perforation is made in the floor of the third ventricle
Ventriculostomy

VP Shunt
Presentation Outline

- Directionality and Orientation
- CNS Basics
- Brain Divisions
- Cortical Divisions
- CSF and Ventricular System
- **Vasculature and Cerebral Blood Flow**

Vasculature and Cerebral Blood Flow

- Primary arterial supply
 - Common carotid arteries
 - Bifurcates into external and internal carotid arteries
 - ICA supplies anterior (ACA) and middle cerebral arteries (MCA)
 - Vertebral arteries join to form basilar artery
 - Bifurcates into posterior cerebral arteries (PCA)
Middle Cerebral Artery

Anterior & Posterior Cerebral Arteries
Vasculature and Cerebral Blood Flow

- Primary arterial supply
 - ACA, MCA, and PCA meet at the circle of Willis
 - Anastomotic ring
 - Immediately ventral to the optic chiasm
 - Assisted by AComA and PComA

Circle of Willis

Middle Cerebral Artery
Vasculature and Cerebral Blood Flow

- Watershed zones
 - Regions between cerebral arteries
 - Most susceptible to ischemia and infarction
 - Can produce:
 - Proximal arm and leg weakness
 - Transcortical aphasia in dominant hemisphere
Vasculature and Cerebral Blood Flow

- **ACA**
 - Supplies most of the cortex on the anterior medial surface of the brain
 - Travels in the interhemispheric fissure
 - Has 2 branches:
 - Pericallosal artery
 - Callosomarginal artery
 - Deep structures supplied by the recurrent artery of Heubner
Vasculature and Cerebral Blood Flow

Anterior cerebral artery

Vasculature and Cerebral Blood Flow

Middle cerebral artery
Vasculature and Cerebral Blood Flow

- MCA
 - Supplies most of the cortex on the dorsolateral convexity of the brain
 - Superior division: supplies cortex above the sylvian fissure
 - Inferior division: supplies region below the sylvian fissure
 - Deep structures supplied by the lenticulostriate arteries
Vasculature and Cerebral Blood Flow

- PCA
 - Supplies the inferior and medial temporal and occipital cortex
 - Deep structures supplied by the thalamoperforator arteries
Disruption of Cerebral Blood Flow

- Ischemic stroke
 - Results in inadequate blood supply to a region of the brain for enough time to cause infarction of tissue
 - Most common type of stroke
 - Resulting from a blood clot or obstruction of an artery
 - Neurons lose their oxygen and glucose supply

Disruption of Cerebral Blood Flow

- Ischemic stroke
 - Transient ischemia attack (TIA)
 - Embolic infarct
 - Thrombotic infarct
 - Hemorrhagic stroke
Disruption of Cerebral Blood Flow

- **TIA**
 - Neurologic deficit lasting < 24 hours
 - Typically only 10 minutes
 - Those longer than an hour are more likely small infarcts
 - Caused by temporary brain ischemia
 - Dissolved embolism or thrombosis
 - Temporary vasospasm

- **Embolic infarct**
 - Piece of material forms in one place and travels through the bloodstream to lodge in and occlude a smaller blood vessel
 - Typically occur suddenly with pain, with maximal deficits at onset
 - Emboli may also include:
 - Air emboli in deep sea divers
 - Septic emboli in bacterial endocarditis
 - Fat emboli in trauma to long bones
Disruption of Cerebral Blood Flow

- **Thrombotic infarct**
 - Blood clot forms locally on a blood vessel wall causing the vessel to occlude
 - May have more of a stuttering/slow course
 - Relatively painless
 - Can lead to the development of emboli
 - May be the result of carotid stenosis, occlusion of sickled cells in SCD

Disruption of Cerebral Blood Flow

- **Intracranial hemorrhage**
 - Typically due to hypertension
 - Occur abruptly
 - Less frequent type of stroke
 - Resulting from a ruptured artery
 - Neurons are flooded with excess calcium, oxygen, and other products
Disruption of Cerebral Blood Flow

- Intracranial hemorrhage
 - Types:
 - Epidural hematoma
 - Subdural hematoma
 - Subarachnoid hemorrhage
 - Intracerebral or intraparenchymal hemorrhage
Disruption of Cerebral Blood Flow

• Epidural hematoma
 • Between dura and skull
 • Due to rupture of middle meningeal artery
 • Symptoms: increased ICP, herniation, changes in consciousness

Disruption of Cerebral Blood Flow

• Subdural hematoma
 • Between dura and arachnoid
 • Due to rupture of bridging veins
 • Symptom: headache, cognitive impairment, unsteady gait, focal dysfunction of underlying cortex
Subdural Hematoma

- Subarachnoid hemorrhage
 - Between arachnoid and pia
 - Two types:
 - Spontaneous: due to arterial aneurysm or bleed from AVM
 - Traumatic: bleeding into CSF from damaged blood vessels from TBI

Disruption of Cerebral Blood Flow
Disruption of Cerebral Blood Flow

- Intracerebral or intraparenchymal hemorrhage
 - Within parenchyma in cerebral hemispheres, brainstem, cerebellum, or spinal cord
 - Two types:
 - Nontraumatic: due to hypertension hemorrhage, brain tumor, vascular malformation
 - Traumatic: due to TBI contusions

Intracerebral Hemorrhage
Disruption of Cerebral Blood Flow

- Edema and excess potassium triggers the release of the excitatory neurotransmitter glutamate
- The overstimulation of neurons leads to sodium and other ions entering the neuron in excessive amounts
- Excess positive ions in the neuron block metabolism in the mitochondria and kill the neuron

Acute Ischemic Stroke in Children

- Incidence:
 - 3/100,000 per year
 - Incidence increasing
 - More sensitive imaging
- Age:
 - Neonates account for 25% of AIS
 - Median age 5 yrs
Acute Ischemic Stroke in Children

- Populations:
 - Male predominance (60%)
 - Predominance in African-American population
- Patient groups:
 - Sickle cell
 - Hemophilia

Acute Ischemic Stroke in Children

- Outcomes:
 - A chain of chemical events results in accumulation of sodium, calcium and zinc ions inside neurons, causing cell death
 - Death in 6%
 - Neurologic deficits in 2/3
 - 20-30% recurrence risk
Reducing Harm from a Stroke

- Tissue plasminogen activator (tPA)
 - Breaks up blood clots and reduces the effects of ischemic strokes
- Research has begun to attempt to save cells in the penumbra (region that surrounds the immediate damage) by:
 - Blocking glutamate synapses
 - Opening potassium channels
 - Using omega-3 fatty acids
Reducing Harm from a Stroke

• Blocking glutamate synapses
 • Excess glutamate may result in the over-excitation of neurons
 • Cannaboidoids have been shown to potentially minimize cell loss after brain damage
 • Decrease the release of glutamate due to their antioxidant or anti-inflammatory actions

Reducing Harm from a Stroke

• Opening potassium channels
 • Reduces overstimulation
• Using omega-3 fatty acids
 • They are a major component of cell membranes
 • May help to block apoptosis and other neural damage
Reducing Harm from a Stroke

• Most effective lab method is to cool the brain
 • Cooling human brain for 3 days improves survival and behavioral functioning
 • A cooled brain (91-97°F) has less activity, lower energy needs and less risk of overstimulation
 • Same with spinal cord injuries

Reducing Harm from a Stroke

• Diaschisis
 • The decreased activity of surviving neurons after damage to other neurons
 • Because activity in one area stimulates other areas, damage to the brain disrupts patterns of normal stimulation
 • Stimulant drugs paired with physical therapy enhanced recovery of stroke victims suffering from diaschisis
 • The use of drugs to stimulate activity in healthy regions of the brain after a stroke may be a mechanism of later recovery
SUMMARY

If the brain were simple enough for us to understand, we would be too simple to understand it.

-Emerson Pugh